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MINIMAL IMBEDDINGS OF R-SPACES

MASARU TAKEUCHI & SHOSHICHI KOBAYASHI

1. Introduction

Let G be a connected real semi-simple Lie group without center and U a
parabolic subgroup of G. The quotient space G/U is called an R-space. A
maximal compact subgroup K of G is transitive on G/U so that an R-space
is necessarily compact. Let & = & + § be a Cartan decomposition of the
Lie algebra & of G with respect to the Lie algebra & of K. The main purpose
of this paper is to construct a natural imbedding ¢ of an R-space G/U into
B with the following properties :

(1) ¢ is K-equivariant;

(2) ¢ has minimum total curvature;

(3) If G is simple and K/K N U is a symmetric space, then ¢ is iso-
metric and ¢(G/U) is a minimal submanifold of a hypersphere in % in the
sense that its mean curvature normal is zero.

In general, an n-dimensional submanifold M of the hypersphere S¥(r) of
radius » about the origin in the Euclidean space R¥*! is a minimal submani-
fold if and only if

dyp=—"y onMfori=1,---,N+1,
2

where (3%, - - -, y¥*1) is a coordinate system for R¥*! and 4 is the Laplacian
of M. For many symmetric R-spaces we verify that the Laplacian 4 for
functions has no eigen-value between 0 and —#/r*. We do not know whether
this is true or not in general for all symmetric R-spaces.
Previously, it was known that ¢ has minimum total curvature if G/U is
a K#ehlerian C-space (Kobayashi [6]) or if G/U is a symmetric space of rank
1 (Tai [15]). For a symmetric R-space G/ U, the imbedding ¢ has been con-
sidered by Nagano [13], and has also been conjectured to have minimum total
curvature (Kobayashi [7]). The class of symmetric R-spaces includes
(1) all hermitian symmetric spaces of compact type;
(i) Grassmann manifolds O(p + q)/O(p) x O(g), Sp(p + q)/Sp(p) X
Sp(q);
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(iii) the classical groups SO(m), U(m), Sp(m);

(V) UQm)/[Sp(m), U(m)|O(m);

(v) (SO(p + 1) X SO(g + 1))/S(O(p) X O(g)), where S(O(p) X O(g)) is
the subgroup of SO(p + 1) X SO(g + 1) consisting of matrices of the form

e 0

04 o). e==x1, 4c0w), BOW:;

OB

(This R-space is covered twice by S? x $%.)

(vi) the Cayley projective plane and three exceptional spaces.

An explicit formula for the imbedding ¢ of a symmetric R-space of classical
type in B in terms of matrices can be found in Kobayashi [7].

In § 3 we recall briefly the concept of minimum imbedding without men-
tioning that of total curvature. For the latter we refer the reader to Chern
and Lashof [1], {2], Kuiper [9], [10] and references therein.

The result of this paper on the total curvature of ¢ relies heavily on the
cellular decomposition of an R-space obtained by Takeuchi [16].

Our result on minimal submanifolds of a hypersphere is somewhat related
to those of Takahashi [7] and Hsiang [4], and Proposition 5.1 on minimal
submanifolds appears in Takahashi [17].

2. Parabolic subgroups and R-spaces

Let G be a connected real semi-simple Lie group without center, and & its
Lie algebra. Let &, be the complexification of &, and G, the connected
complex semi-simple Lie group without center generated by the Lie algebra
®&¢. Then we may consider G as a subgroup of G.. The complex conjuga-
tion ¢ of &, with respect to & generates an automorphism ¢ of G, which
leaves G elementwise fixed.

A subgroup of G is called a parabolic subgroup of G if it contains a
maximal solvable subgroup of G ; it is always connected. A subgroup of G
is called a parabolic subgroup of G if it is the intersection of G and a ¢-in-
variant parabolic subgroup of G.. A parabolic subgroup of G may not be
connected, but it is still uniquely determined by its Lie algebra alone. A sub-
algebra of & is called a parabolic subalgebra if it is the Lie algebra of a para-
bolic subgroup of G. If Z is an element of & such that ad Z is a semi-simple
endomorphism of & whose eigen-values are all real, then the direct sum Il of
all eigen-spaces corresponding to the non-negative eigen-values of ad Z is a
parabolic subalgebra of &. Conversely, every parabolic subalgebra of & can
be obtained in this fashion (cf. Matsumoto [11]).

An R-space is, by definition, a quotient space M = G/U, where G is a
connected real semi-simple Lie group without center and U is a parabolic
subgroup of G. Given an R-space M = G/U, we choose once and for all an



MINIMAL IMBEDDINGS OF R-SPACES 205

element Z ¢ & which determines the parabolic subalgebra 11, the Lie algebra
of U, in the manner described above. (Such an element Z is not unique.)
We choose also a maximal compact subgroup K of G such that Z is per-
pendicular to the Lie algebra & of K with respect to the Killing form (, ) of
®&. In the Cartan decomposition & = & + %, Z is then contained in .
We choose a maximal abelian subalgebra % of f§, which contains Z, and
introduce a linear order in the dual space of % in such a way that 7(Z) > 0
for all positive roots y of & with respect to . Let % be the direct sum of
the root spaces corresponding to the positive roots. Then 9t is a nilpotent
subalgebra of &. Let N be the connected subgroup of G generated by %,
and set

Ki=1{keK; (AdK)Z =2} .

Then we have (Takeuchi [16])

Proposition 2.1. (i) KU =G and KN U = K, so that M = K/K,; (ii) If
we denote by Nyx(N) (resp. Ng () the normalizer of U in K (resp. in K,),
then Ng(2)/Ng Q) is finite. If ky, - - -, ky € Nx(N) are complete representa-
tives of Nx(Q)/ Ny, () and if o denotes the origin of G/U, then the orbits
Nko, ---, Nkyo of N through k.o, - - -, k,0 give a cellular decomposition of
M, and these cells are all cycles mod 2.

As a consequence, we have 3,dim H;(M, Z,) = b. From (i) we see that
the mapping ¢ : M = K/K, —  defined by

o(kK) = (4dK)Z,  kK,<K/K,

is a K-equivariant imbedding of M into . The purpose of this paper is to
study geometric properties of this imbedding ¢.

Proposition 2.2. Let X be a regular element of . Then the number of
zero points of the vector field on M generated by X coincides with the num-
ber b of the elements in Ny (%) /Ny ().

Proof. We first prove

Lemma. IfwesetPy={XeP;[Z,X]=0}, then U NP =%,

Proof of Lemma. From the definitions of U and %, we have clearly
By U NP, Let X 11 N P and write

X=X0+X+7

where [Z, X,] = 0 and X, is in the direct sum of the eingen-spaces correspond-
ing to the positive eigen-values of ad Z. We wish to show X, = 0. Let ¢ be
the involutive automorphism of & such that ¢|g = identity and z|g =
—identity. Then zZ = —Z and hence 7z o (adZ) = —(ad Z) o . 1t follows
that [Z, ¢ X,] = O and that zX_ is in the direct sum of the eigen-spaces cor-
responding to the negative eigen-values of ad Z. On the other hand, since X
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isin , we have tX = —X and X e Ul N B. Since tX =X, + X is in
1, it follows that X', = 0. This completes the proof of the lemma.

Let X be a regular element of 8. For each k € K, X and (4d k)X generate
vector fields on M with the same number of zero points on M. Since
(Ad k)X € % for a suitable k£, we may assume that X is a regular element of
U. It suffices therefore to prove that, for a regular element X of ¥, the zero
points of the vector field generated by X coincide with the orbit N (%)o of
Nx(%) through the origin 0 of M = K/K,. Let ko (k€ K) be a zero point of
the vector field generated by X. Then X ¢ (Ad k)Il and hence (Ad k™)X e 1.
Since (Ad k=) X e R, the lemma above implies (Ad k)X ¢ B,. If we set &,
={Y e &; [Z,Y] = 0}, then ®, is a reductive Lie algebra, and &, = &, + R,
is a Cartan decomposition of &,. Since ¥ is a maximal abelian subalgebra of
$B,, there exists an element k, e K, such that (4d k;)(Ad kD)X € U, If we
set k' = kk,, then (Adk’~)X € 9. Since X is a regular element of %, k' lies
in Ng(2). On the other hand, k’o = kk,0 = ko. It is easy to see the converse
that N;(2)o is contained in the set of zero points of the vector field generated
by X.

3. Minimum imbeddings

Let M be a compact manifold, and & the set of C~ functions f on M whose
critical points are all isolated and non-degenerate. For each f ¢ &, we denote
by A(f) the number of the critical points of f on M. Set

g = inf 8(f).

feF

Then 3 depends only on the differentiable structure of M, and the theory of
Morse tells us that, for any coefficient field F, the following inequality holds:

> X, dim HM, F) .

Let ¢ be an imbedding of M into a real vector space V. Then for almost*
all linear functional u on ¥, the function u o ¢ belongs to the family &#. We
say that the imbedding ¢ : M — V is minimum if § = B(u ¢ ¢) for almost all
linear functionals u on ¥ such that uo ¢ belongs to the family #. Since
Bluocgp)>p> 3, dimHM,F) always, ¢ is minimum if Bu-¢) =
5. dim H,(M, F) for some coefficient field F and almost all linear functionals
u such that (4o ) e &.

We shall prove the following theorem:

Theorem 3.1. Let M = G/U be an R-space, and ¢ : M — B the imbedding
defined in §2. Then ¢ is minimum, and

1 in the sense of measure.
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g=20:HM, Z).

We shall first outline the proof. Let X be any element of 8, and u, the
linear functional on § which corresponds to X under the duality defined by
the Killing form (,) of ®&. We define a suitable Riemannian metric € , >
and show that the 1-form d(uy o ¢) corresponds to the vector field generated
by X by the duality defined by « , ». Then the critical points of uy o ¢
coincide with the zero points of the vector field generated by X. Since the
singular elements of ¥ form a set of measure zero, the theorem will then
follow immediately from Propositions 2.1 and 2.2. We now give the details
of the proof.

Let &, be the Lie algebra of K,. The Killing form (,) of & is negative
definite on &. Let I be the orthogonal complement of &, in & with respect
to the Killing form (, ). Then IR is invariant by Ad K,. As in the proof of
Lemma for Proposition 2.2, let z be the involutive automorphism of & defined
by z|g = identity and rjg = —identity. Since r o (@d Z) = —(ad Z) - z as we
have shown earlier in the procf of Proposition 2.2, we have z o (ad Z)* =
(ad Z) o . Hence (ad Z)* leaves & and P invariant. Since ad Z leaves the
Killing form (,) invariant, (ad Z)* is a symmetric endomorphism of & with
respect to (, ). If we denote by §5. the direct sum of the eigen-spaces cor-
responding to the positive eigen-values of (ad Z)*s, then P = P, + R, and
B, and P, are mutually orthogonal with respect to the Killing form (, ).
Since (ad Z)* maps &, into 0, (ad Z)* leaves IN invariant. Let y;, ---, 7, be
the set of roots y (multiplicity counted) of & with respect to & such that
7(Z) > 0. Then we know (Takeuchi [16]) that there exist a basis Sy, -- -, S,
for M and a basis T4, - - -, T, for B, such that

—(Sza SJ)_——az], (Tz, T])=5” for 1 Sl,]_<_n;
(%) [H,S]=7(HT;, H,T]=7,H)S, for He ¥ and 1 <i < n;
S;+ T, ell for 1 <i<n.

By setting H = Z in (%), we see that [Z, M] = B, and [Z, B.] = I and that
(ad Z)*|an is a positive definite symmetric endomcrphism of X with respect to
—(,). Let £ be a positive definite symmetric endomorphism of I with
respect to —(, ) such that £ = (ad Z)*|gm. Then £S; = r(2)S; for 1 < i< n.
Since (Adk)Z = Z for ke K,, we have (Adk)X = (Adk)X for X eI
and % € K,.

Lemmal. X +-Z4Z,X]el for XeR,.

Proof of Lemuma 1. 1t suffices toverifyfor X =T, (1 <i < n). From (%)
we obtain

T, +UZ, T =T, + DS =T, + LS, =T, + S; e 1,

which proves Lemma 1.
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We shall now construct K-invariant Riemannian metric < , > on M =
K/K,. Let To(M) be the tangent space of M = K/K, at the origin 0. Under
the natural identification of I with T,(M), the adjoint action of K, on I
corresponds to the linear isotropy representation of K, on To(M). We set

X, Yy = —(X,Y) for X, YeiR.

Since (, ) is negative definite on & and £ commutes with Ad k¥ on M for every
k ¢ K,, it follows that « , > is a K,-invariant positive definite symmetric
bilinear form on . Hence < , > can be extended uniquely to a K-invariant
Riemannian metric € , » on M = K/K,.

Let X € B and let u, denote the linear functional on B defined by u (Y)
= (Y, X) for Y ¢ . Let ¢ be the imbedding of M into {3 defined in §2, and
set fy = Uy o ¢. In other words, fy is defined by

fx(ko) = ((Ad k)Z,X) for keK.

Lemma 2. For every X € B, dfy is the 1-form (i.e., the covariant vector)
corresponding to the vector field (i.e., the contravariant vector) generated
by X under the duality defined by the Riemnnian metric & , .

Proof of Lemma 2. We denote by the same letter X the vector field on
M generated by X. The value of X at a point ko of M will be denoted by
Xko. Similarly, for Y ¢ i, kYo denotes the vector at ko obtained from the
vector Yo e Ty(M) by a transformation 4 ¢ K. Then Lemma 2 may be stated
as follows :

<(dfx)io, KYO> = & Xko,kY0o>» for YeIN and keK.

We calculate the left hand side first.
d ‘ d
<(de)l:0) kY0> = _dt— fx((k - €xp tY)O)Jo = Tt' ((Ad k- €Xp tY)Z’ X)[o

= % ((Ad exp tY)Z, (Ad k)X |, = ([Y, Z1, (Ad k~1)X)
= (Y, 12, (4d kH)X]) .

We decompose (AdkDX ¢ P as follows: (Ad i DX =X, + X,, where
X, e B, and X_ € PB,. Then we have

<(dfy)ios kY0 > = (¥, [Z, X+]) .
We now calculate the right hand side.

&Xko, kYo>» = «((Ad k) X)o, Yo> .



MINIMAL IMBEDDINGS OF R-SPACES 209

Since we have ((Ad k) X)o = (—£7[Z, X, ])o by Lemma 1, we obtain
LXko, kYo» = —«{7Z,X.],Y> =(1Z,X.],Y).

This completes the proof of Lemma 2.

Theorem 3.1 now follows from Propositions 2.1 and 2.2 and from Lemma
2 just proved.

Remark 1. Given an R-space M = G/U we may assume without loss of
generality that G acts effectively on M, i.e., U contains no nontrivial normal
subgroup of G. Then the minimum imbedding ¢ : M — % is substantial in the
sense that ¢(M) is not contained in any (affine) hyperplane of ; otherwise
there would exist a nonzero linear functional uy of $§ such that the function
fx = Uy o ¢ is constant on M. But Lemma 2 says that if dfy = 0 on M, then
the vector field on M generated by X also vanishes identically on M. Hence,
X=0.

Remark 2. Since g > 3 dim H,(M, Z,) by Morse theory, we may con-
clude that, for any R-space M = G/ U, the inequality

3 dim Hi(M, Z)) > Y dim H.M, Z,,)

holds for all prime numbers p.

4. Symmetric R-spaces and minimal submanifolds of spheres

Let G be a connected real semi-simple Lie group without center, and Z an
element of & such that ad Z is a semi-simple endomorphism of & with eigen-
values —1,0 and 1. Let & = &_, + &, + &, be the corresponding eigen-
space decomposition, and U the parabolic subgroup of G with Lie alge-
bra U = &, + &,. Taking a Cartan decomposition ® = & + B such that
Z e %P, let K be the maximal compact subgroup of G generated by K. Let
Ky=1{keK;(@dk)Z=Z} and R =R, + M as in §§2 and 3. Let &, be
the complexification of & and G, the complex semi-simple Lie group without
center generated by &,.. Let ¢ denote the restriction to K of the inner auto-
morphism of @&, defined by exp (ziZ) e G¢. If we set K, = (ke K; 6k = Kk},
then K, lies between K, and the identity component of K,. It follows that
M = K/K, is a symmetric space defined by the involutive automorphism 4
of K. (By results of Nagano [13] (cf. also Kobayashi-Naganc [8] and Take-
uchi [16]), the converse is also true; namely, if M = G/ U is an R-space such
that M = K/K, is symmetric, then U is determined by an element Z ¢ & such
that ad Z has eigen-values —1, 0, 1.) Throughout this section we shall con-
sider a symmetric R-space M = G/U = K/K,, where U is determined by
such a Z ¢ . The main purpose of this section is to prove that, with respect
to the imbedding ¢: M — % defined in §2, ¢(M) is a minimal submanifold
of the sphere of radius 427 in B, where n = dim M.
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With our notations in §3, we have 7;(Z2) =1for 1 <i<rn and {(X)=X
for all X ¢ 9. The Riemannian metric « , > on M is defined by « X, Y >
= —X,Y) for X, Y ¢ M = Ty(M). From the formulas (x) in §3 it follows
that the imbedding ¢: M — P is isometric with respect to the Riemannian
metric € , 3> and the restriction of the Killing form (, ) of & to .

From the definition of the imbedding ¢:M — R it is clear that its image
@(M) lies on the sphere of radius (Z, Z)? with center at the origin of .

Proposition 4.1. For a symmetric R-space M = G/U, we have (Z,Z) =
2n, where n = dim M.

Proof. (Z,Z) = Tr(ad Z)* = il (2P + i(_n(z»z = 2n.

Theorem 4.2. Let M =G/U = K/K, be a symmetric R-space with G
simple. Then ¢(M) is a minimal submanifold of the sphere of radius 2n
about the origin in R, where n = dim M.

Proof. We identify (M) with M. Let S denote the sphere of radius J2n
about the origin in B, and « be the second fundamental form of M in §; at
each point x € M, it defines a symmetric bilinear mapping 7.(M) x T (M)
— T+, where T denotes the normal space to M in § at x. Choosing an
orthonormal basis e,, - - -, ¢, for T,(M), we define the mean curvature normal
£, by

E.’c = :,Z:la(ei: ez) -

Then &, is independent of the choice of e, - - -, e,. The submanifold M is
minimal if and only if &, = 0 at every point x of M. In the present case,
since the imbedding ¢ is K-equivariant, the field £ of mean curvature normals
is invariant by the adjoint action of K in $. It suffices therefore to prove that
£ vanishes at the origin o of M. The tangent space T,(M) is parallel to [Z, Tt]
=, in P (cf. formulas (x) in §3). Since Z is normal to the sphere § at o,
&, is perpendicular to Z as well as to §,. Hence &, can be identified with
an element of B, which is perpendicular to Z and is invariant by the adjoint
action of K in §5,. The proof of the theorem is now reduced to that of the
following lemma.

Lemma. Let M = G/U be a symmetric R-space with G simple. Then the
space {X ¢ B; (Adk)X = X for all k ¢ K} is spanned by Z.

Proof of Lemma. Consider first the case where the complexification &,
of & is not simple. In this case, & is compact and simple, and & admits a
complex structure J such that § = J& and B, = JR,. Moreover, &, has center
of dimension 1 (cf. Helgason [3]). Our lemma is clearly true in this case.

Consider now the case where ®, is simple. In this case, the center of &,
is spanned by Z (cf. Kobayashi-Nagano [8] and Takeuchi [16]). Let & =
[&, &,] and ;= & N B,. Then &) = K, + B, is a Cartan decomposition
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of a semi-simple Lie algebra &;. It follows that no nonzero element of 5 is
invariant by &, (cf. Helgason [3]). Since the center of &, is spanned by Z,
we have £, = %} + {Z}x-

Remark. The lemma above may be derived also from Frobenius reci-
procity and the theorem of E. Cartan to the effect that every complex irreduci-
ble representation of K appears with multiplicity at most 1 in the regular
representation of K on K/K,.

5. Eigen-values of the Laplacian

Let R¥** be a Euclidean space of dimension N + 1 with natural coordinate
system y = (3%, .- -, ¥y¥*1). Let S¥(r) be the sphere of radius r about the
origin of R¥*!, M an n-dimensional submanifold of S¥(r) with local coordinate
system x*, - - -, x*, and

y =y, -, x")

the local equation defining M. At each point of M, we choose an orthonormal
system of unit vectors &), &, - -+, &y, Such that &, is normal to S¥(r) and
&, -+, Ey_, are tangent to $¥(r) but normal to M. Then

7 . 9 N-n
axjé‘.;" = ; ij a—.-;: + ;‘\;‘; bé‘k&z + bg'kéo .

If we set g, = (%’ %) and denote by (g7*) the inverse matrix of (g;.),
xi 9x

then the Laplacian of y = (3%, - - -, y¥*Y) as a system of functions on M is
given by
dy = L gV Vvy = 2 87%b5&: + 31 87%b%4&,
Ik 275k : Ik
where /; denotes the covariant differentiation with respect to 9/dx7. The first
term on the right hand side is nothing but the so-called mean curvature
normal on M as a submanifold of $¥(r). Hence, M is a minimal submanifold
of S¥(r) if and only if
dy = 3 8Bk -
Js

To simplify the right hand side, we note that

v,y =r, (a—y.,y> =0,

oxJ
%)+ (2, )
(axfax" S/ oxi’ gx*
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Since y = r§, on M, the last equality above may be rewritten as follows:
rbY + 83 = 0.

Hence, 3 g/%b%.&, = —% y. We may now conclude
gk

Proposition 5.1. A submanifold M of §¥(r) is a minimal submanifold of
S¥(r) if and only if

Ay - ?y >
where n = dim M.

From Theorem 4.2 and Proposition 5.1 we obtain

Theorem 5.2. Le: M = G/U = K/K, be a symmetric R-space with G
simple, and ¢ : M — B the imbedding defined in § 2. For each linear functional
u of B, we set f = ucq@. Then with respect to the metric &£ , > on M, f
satisfies Af = —if.

Remark. The fact that 4f = Af for some 2 (independent of f) may be
derived from the theorem of Cartan quoted in the remark at the end of §4.
We can then verify 2 = —1/2 using the special function f, = uc ¢.

We wish to relate this eigen-value —-1/2 with the scalar curvature of M.
We denote by (, )g and (, ) the Killing forms of & and &, respectively.
The curvature tensor R of the symmetric space M = K/K, is given by

R(V,X)Y = —[[V,X],Y] for V,X,YeIR;
its Ricci tensor S is given by
S(X, Y) = trace of the map V — R(V, X)Y

= trace of the map V — —[[V, X], Y].
= —trace ((ad Y)(ad X)) g -
If we construct an orthonormal basis for & with respect to —(, )@ by choos-

ing first an orthonormal basis for &, and then one for M, ad X acting on &
is given by a matrix of the form

< 0 A(X))
—tAX) 0 /)
Hence, (ad Y)(ad X) acting on ® is given by a matrix of the form
(—A(Y)tA(X) ' 0 ) )
0 —tA(Y)AX)

1t follows that
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(X, Y)q = trace (ad Y)(ad X)|p = —2(trace ‘A(Y)A(X))
= 2trace (ad Y)(ad X)jm = —25(X,Y).

Proposition 5.3. The Ricci tensor S of a symmetric space M = K/K, is
given by

SX,Y) = —3X,YV)g for X, Yed.

It we multiply the metric tensor of M by a positive constant g, then both
the scalar curvature ¢ of M and the Laplacian 4 of M are multiplied by 1/a.
It is therefore desirable to express the eigen-values of 4 in terms of ¢. Now

we calculate ¢ for some R-spaces. If there exists a positive number y such
that

X, Vg=p X, Y)g for X, Yec&,
then the scalar curvature c is given by
¢ = ghy (n =dimM).
In fact, for X, Y ¢ I, we have

S(X, ¥) = —%(X, Vs = —L£X Vo= —L<X,¥>,

and hence ¢ = inu. For the following six classes of symmetric spaces, this
method enables us to calculate the scalar curvature ¢. (For calculation of g,
we refer the reader to Iwahori [5].)

(1) Irreducible hermitian symmetric space of compact type:

1

—_— C =
2

= n

@ i

(2) Real Grassmann manifold of non-oriented p-planes in R?*9,
@®+q>2):

Pt+qg—2 cPIP+9—-2)

TR i+ 9

(3) Quaternionic Grassmann manifold of p-planes in quaternionic vector
space of dimension p + g:

p+qg+1 c=PIP+g+ 1)
2p + 9 p+gq

(4) Group manifold SO(m), (im > 2):

‘u=
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uz__.___m_"z, c=lm(m—2).
2m — 2 8

(5) Group manifold Sp(m):

m+ 1 1
= ——, = —m 1
2m + 1 ¢ 2 (m + 1)

(6) n-sphere, (r > 1):

n—1 1
— , c=_—-(n—1).
# n 2( )

By calculating the eigen-values of the Casimir operator, Nagano [12]
determined the eigen-values of the Laplacian 4 acting on the space of func-
tions on a compact symmetric space K/K, with X simple and K/K| simply
connected (with respect to the invariant Riemannian metric induced from the
Killing form of ®). From Nagano’s table we see that, for (1), (3) and (6),
there is no eigen-value of 4 between 0 and — §(= —c¢/(ny)). Every eigen-value
of 4 for functions on the Grassmann manifold of non-oriented p-planes in
R?*? appears as an eigen-value of A4 for functions on the Grassmann mani-
fold of oriented p-planes in R?*¢, but not vice versa. From Nagano’s table
we see that the Laplacian 4 for functions on the Grassmann manifold of
non-oriented p-planes in R?*? has no eigen-value between 0O and
_i(: __2p+4q

2 pap +q—2)
not know if this is true for all p and g. By the same method we can verify
that the Laplacian acting on the space of functions on the group manifold

) at least if p >3 and p + g > 17. But we do

SO(m) (resp. Sp(m)) has no eigen-value between 0 and — 1 (: — _JL)
2 m(m — 2)
(resp. 0 and _1 (: — ___C_>> . For eigen-values of the Laplacian for
2 mim+ 1)

the spaces (1) and (6), see also Obata [14].
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